FIND THE SPECIFIC TERM IN A GEOMETRIC SEQUENCE

To do this, the formula is $\{S_n\} = \{a_1 \cdot r^{n-1}\}.$

Example 3

Find the fourth term of the sequence with $a_1 = 5$, r = -2.

$${S_4} = {a_1 \cdot r^{n-1}} = {5 \cdot (-2)^{4-1}}$$

= ${5 \cdot (-2)^3} = {5 \cdot (-8)} = {-40}$

The solution shows the fourth term as (5)(-2)(-2)(-2) or $5(-2)^3$. The exponent 3 is one less than the term we are seeking. See how $\{S_n\} = \{a_1 \cdot r^{n-1}\}$ makes sense?

Example 4

Find the 10th term of the sequence with {1, 2, 4, 8, ...}.

$$a_1 = 1$$
 $r = \frac{4}{2} = 2$
 $\{S_{10}\} = \{a_1 \cdot r^{n-1}\} = \{1 \cdot (2)^{10-1}\} = \{2^9\} = 512$

Practice Problems 2

Find the specific term requested in the sequence. If you don't already know how to find powers larger than 2 with your calculator, this is a good time to find out.

- 1. Find the 9th term of {2, -4, 8}.
- 2. Find the 20th term of {1, 3, 9}.
- 3. Find the 12th term of $\{-3, 1, -\frac{1}{3}\}$.
- 4. Find the 7th term of $\{\frac{1}{1000}, \frac{1}{100}, \frac{1}{10}\}$.

FIND THE SPECIFIC TERM IN A GEOMETRIC SEQUENCE

To do this, the formula is $\{S_n\} = \{a_1 \cdot r^{n-1}\}.$

Example 3

Find the fourth term of the sequence with $a_1 = 5$, r = -2.

$$\{S_4\} = \{a_1 \cdot r^{n-1}\} = \{5 \cdot (-2)^{4-1}\}$$
$$= \{5 \cdot (-2)^3\} = \{5 \cdot (-8)\} = \{-40\}$$

The solution shows the fourth term as (5)(-2)(-2)(-2) or $5(-2)^3$. The exponent 3 is one less than the term we are seeking. See how $\{S_n\} = \{a_1 \cdot r^{n-1}\}$ makes sense?

Example 4

Find the 10th term of the sequence with $\{1, 2, 4, 8, \ldots\}$.

$$a_1 = 1$$
 $r = \frac{4}{2} = 2$

$$\{S_{10}\} = \{a_1 \cdot r^{n-1}\} = \{1 \cdot (2)^{10-1}\} = \{2^9\} = 512$$

Practice Problems 2

Find the specific term requested in the sequence. If you don't already know how to find powers larger than 2 with your calculator, this is a good time to find out.

- 1. Find the 9th term of {2, -4, 8}.
- 2. Find the 20th term of {1, 3, 9}.
- 3. Find the 12th term of $\{-3, 1, -\frac{1}{3}\}$.
- 4. Find the 7th term of $\{\frac{1}{1000}, \frac{1}{100}, \frac{1}{10}\}$.

The formula for finding the sum or series of a geometric sequence is $\frac{a_1(1-r^n)}{1-r}$.

Example 6

Use the formula to compute the series.

$$\sum_{k=1}^{5} \{3^k\} \Rightarrow a_1 = 3, a_2 = 9, r = 3, n = 5$$
$$\Rightarrow \frac{3(1-3^5)}{1-3} = \frac{3(1-243)}{-2} = \frac{3(-242)}{-2} = 3(121) = 363$$

Example 7

Solve the series by adding the terms of the sequence. Then use the formula and compare the solutions

$$\sum_{k=1}^{8} {2^{k}} = 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 = 510$$

$$\Rightarrow a_{1} = 2, a_{2} = 4, r = 2, n = 8$$

$$\Rightarrow \frac{2(1-2^{8})}{1-2} = \frac{2(1-256)}{-1} = -2(-255) = 510$$

Practice Problems 3

Compute the series.

1.
$$\sum_{k=1}^{5} \{2^{k-1}\}$$

2.
$$\sum_{b=1}^{5} \{10^{2-b}\}\$$

3.
$$\sum_{M=1}^{5} \{(\frac{2}{3})^{M-2}\}$$