Practice Problems 1

Express as a logarithm.

1.
$$4^3 = 64$$

2.
$$8^{\frac{2}{3}} = 4$$

3.
$$125^{\frac{4}{3}} = 625$$

Express with exponents.

4.
$$\log_9 27 = 1.5$$

5.
$$\log_{10} .0001 = -4$$

6.
$$\log_{11} 1,331 = 3$$

Solve for x.

7.
$$\log_7 343 = x$$

8.
$$\log_{1,000} 100 = x$$

9.
$$\log_6 \frac{1}{36} = x$$

Get the mantissa from the table: .8451 Use the exponent for the characteristic: 3

$$log 7,000 = 3.8451$$

$$\log 7,000 = 3.8451$$
 : $10^{3.8451} = 7,000$

Practice Problems 2

Solve for x. You may round the mantissa to two places if you wish.

1.
$$\log 400 = x$$

2.
$$\log 80 = x$$

3.
$$\log 6,000,000 = x$$

4.
$$\log 30,000 = x$$

Practice Problems 3

Use the table to solve for x. (Find the antilog.)

- 1. $\log x = 4.7782$
- 2. $\log x = 2.6990$

3. $\log x = 5.8451$

4. $\log x = 7.9542$

Check your answers by entering the logarithm into your calculator and pressing the key for antilog. You should get a number close to the value of x you got by using the table.

For numbers on the other side of the decimal system (less than 1), there is a little twist because there are two ways to express them. In the past, before calculators, decimal numbers were always expressed with a positive characteristic and mantissa. This was done by adding 10 to a negative mantissa, and then subtracting 10 from the characteristic. Study the example to see how this works.

Example 16

Recall that $(3^2)^5 = 3^{2\times 5} = 3^{10}$. When you raise a power to a power, you multiply the exponents.

$$175^6 =$$

 $\log (175^6) = (\log 175) \text{ times } 6 \text{ or } 6 \log 175$

6 log
$$175 = 6 (2.243) = 13.458$$

or $6(2) + 6(.243) = 12 + 1.458 = 13.458$

antilog 13.458 = 28,710,000,000,000.

Check with \mathbb{Y}^{\times} key or $175 \times 175 \times 175 \times 175 \times 175 \times 175$.

 $175 Y^{\times}$ 6 = 2.87229¹³, which means 2.87229 times 10^{13} .

When this is multiplied and expanded, it is 28,722,900,000,000.

Example 17

Solve using logs with both methods. $(.05)^3 =$

Using negative logs and the calculator both give the same result.

$$3 \log (.05) = 3(-1.301) = -3.903$$

The antilog of -3.903 is .000125.

Practice Problems 4

Solve with logarithms, and check your answers with a calculator.

1.
$$7,194 \times 382 =$$

2.
$$846,300 \times 1,227 =$$

6.
$$(.7)^5 =$$