Example 4

Change $11\pi/6$ to degrees.

$$\frac{11\pi k}{6} \times \frac{180^{\circ}}{\pi k} = 330^{\circ}$$
 $\frac{11\pi r}{6} = 330^{\circ}$

In the future, you can identify radians by the fact that they have π in them. We will not keep putting an r in equations involving unit multipliers.

Practice Problems 1

Find the radian measure of each angle. (1 degree = $\pi/180$ radians.)

Find the degree measure of each angle. (1 radian = $180/\pi$ degrees.)

7.
$$\frac{\pi}{4}$$

8.
$$\frac{5\pi}{6}$$

9.
$$\frac{8\pi}{3}$$

10.
$$-\frac{2\pi}{5}$$

11.
$$-\frac{9\pi}{4}$$

12.
$$\frac{11\pi}{9}$$

Radians may also be expressed as decimals using 3.14 for π . Then $\pi/4$, which is equivalent to 45°, may be written as $3.14 \div 4 = .785$. To be more accurate, we could use the π key on a calculator and get $3.141592654 \div 4 = .785398163$, but for brevity and clarity, I am going to represent π as 3.14.

Practice Problems 2

Find the decimal equivalent for the following radians. Use 3.14 for $\boldsymbol{\pi}.$

1. $\frac{\pi}{2}$

2. $\frac{\pi}{3}$

3. $\frac{2\pi}{3}$

4. $\frac{\pi}{6}$

It is strongly suggested that you memorize the degree-radian equivalents for 30° , 45° , 60° , and 90° . You may also learn the multiples of these angles, but if you know $\pi/6=30^\circ$, it is fairly easy to find $5\pi/6=150^\circ$. These equivalents will be used a great deal in upcoming lessons.

Practice Problems 3

Fill in the table with the missing information. Give the radians with $\boldsymbol{\pi}$ and in decimal form. Give trig functions in decimals to three places.

	degrees		radians (decimal)	sin	cos	tan	CSC	sec	cot
1.	45°								
2.		$\frac{\pi}{2}$							
3.	30°		.524						

Practice Problems 4

- 1. The radius is 50' and the central angle is 120°. Find the distance of the arc opposite the 120° angle.
- 2. The radius is 77' and the central angle is 30°. Find the distance of the arc opposite the 30° angle.
- 3. The radius is 77' and the central angle is 150° . Find the distance of the arc opposite the 150° angle.