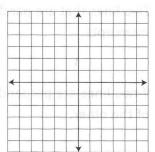

LESSON PRACTICE

Fill in the blank.

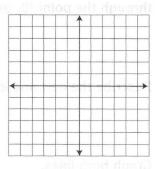
- 1. Two lines that are parallel have the ______ slope and ____ intercepts.
- 2. If two lines are perpendicular, the slope of one is the of the other.

Follow the directions.

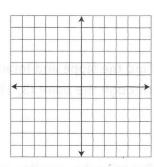
3. Find the slope and intercept of the line that is parallel to Y = 3X + 2 while passing through the point (0, 0).


- 5. Graph both lines.

6. Find the slope and intercept of the line that is parallel to Y = 2X - 1 while passing through the point (3, 1).


8. Graph both lines.

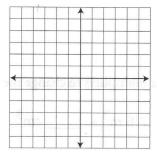
- LESSON PRACTICE
- 9. Find the slope and intercept of the line that is perpendicular to Y = -X + 4 while passing through the point (-1, 5).



- 10. Describe the new line in slope/intercept form.
- 11. Graph both lines.

12. Graph the inequality $Y \le X + 3$.

13. Graph the inequality -Y > 2X + 1.

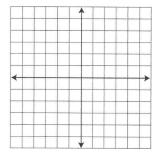

SYSTEMATIC REVIEW

21E

Follow the directions. 2 gig and that and nearly small manifestim 08 saw not ispition.

1. Find the slope and intercept of the line that is parallel to to 2Y = X while passing through the point (-2, -3).

- 3. Write the equation of the new line in standard form.
- 4. Graph the new line.


For #5–8: Graph $-Y \ge 2X$.

5. Graph
$$-Y = 2X$$
.

- 6. Plot two points, one on each side of the line.
- 7. Put the points in the equation, and test whether they are true or not.
- 8. Shade in the graph, and make the line solid or dotted.

Given the two points (-1, -3) and (4, 4):

- 9. Find the slope and the intercept.
- 10. Write the slope/intercept formula.
- 11. Write the standard equation of the line.
- 12. Graph the line.

SYSTEMATIC REVIEW 21E

13-15. The prodigal son was 60 miles from home when he left the pig slop. He started walking toward home at 4 mph. His father saw him coming and ran to meet him at 8 mph. If the son walked 12 hours before they met, how long did the father run?

Use unit multipliers to change the units.

16.
$$7.6 \text{ m}^3 = __ \text{cm}^3$$

Use unit multipliers to convert from metric to imperial measure.

For #18–20: A compound is C_2H_5Cl .

- 18. What percent of the compound is carbon?
- 19. What percent of the compound is hydrogen?
- 20. What percent of the compound is chlorine?