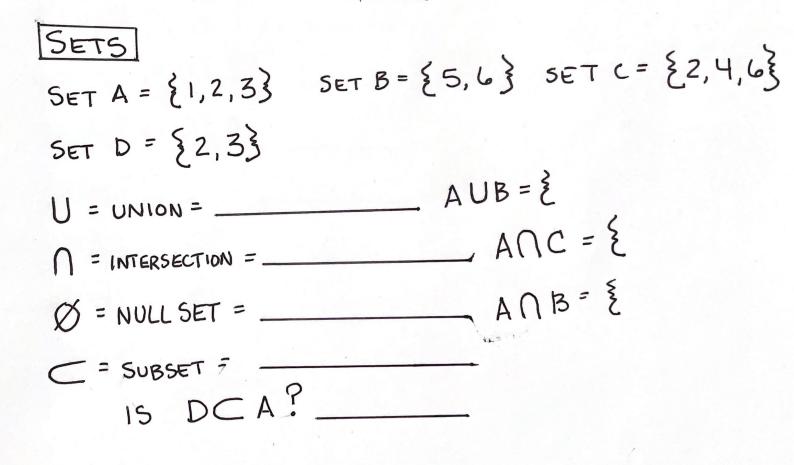
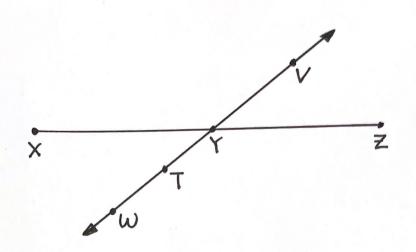
GEOMETRY CH. 2 - BOARD PROBLEMS


DEFINE THE FOLLOWING: 1) GEOMETRY 2) POINT 3) LINE 4) RAY 5) LINE SEGMENT 6) HOW MANY DIMENSIONS ARE IN A! POINT ____ LINE ____ PLANE _____ SPACE ____ 7) 13 ÷ 국 = 8) 60 IS 30% OF WHAT NUMBER? CH. 2 PLANES & SETS


PLANE -

TWO LINES IN THE SAME PLANE ARE ____

THE STUDY OF TWO-DIMENTIONAL SHAPES MORE IS CALLED

THE STUDY OF THREE - DIMENTIONAL SHAPES

 1) \overline{XY} $U \overline{YZ}$?

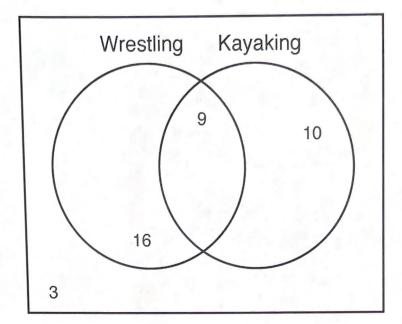
 2) \overline{W} $U \overline{YY}$?

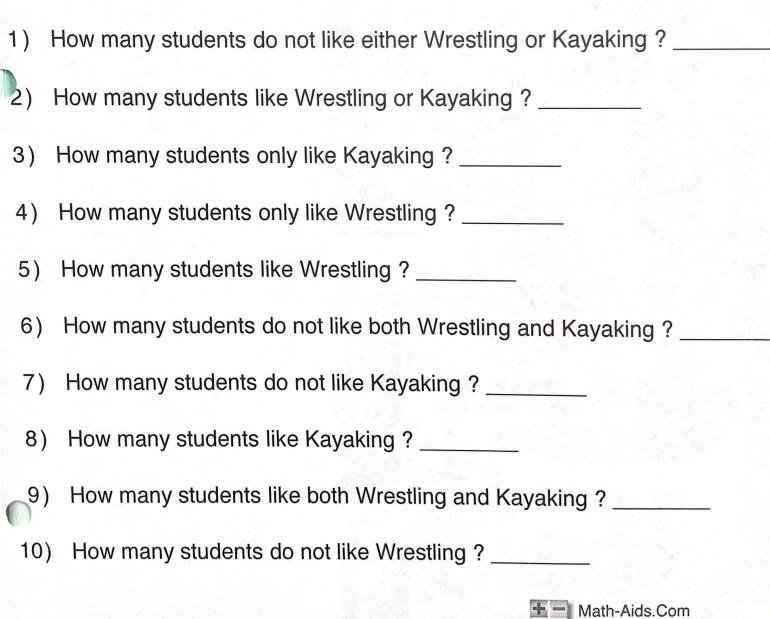
 3) $\overline{W} \cap \overline{YY}$?

 4) $\overline{XY} \cap \overline{TY}$?

 4) $\overline{XY} \cap \overline{TY}$?

 5) $\overline{YT} \cap \overline{WT}$?


 5) $\overline{YT} \cap \overline{WT}$?


 6) $\overline{W} \cap \overline{XZ}$?

 7) $\overline{W} \subset \overline{YT}$?

 8) $\overline{YZ} \subset \overline{XZ}$?

Answer the Questions Based on the Venn Diagram

LESSON PRACTICE

Fill in the blanks.

1. A plane has both ______ and ______.

2. A plane is said to be _____ dimensional.

3. Two lines that lie in the ______ plane are coplanar.

4. ______ shapes are studied in plane geometry and _______ shapes in solid geometry.

5. The intersection is where two or more things ______.

6. A union is where two or more things are _____

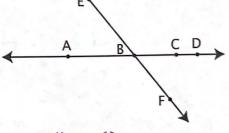
7. A set is a _____ of things.

8. An empty, or ______, set means there is no possible answer.

9. A two-dimensional figure that extends infinitely in all directions is a

LESSON PRACTICE 2A

Match each definition to its symbol.


- 10. subset ∪
- 11. null set
- 12. union ∩
- 13. intersection

Use the drawing as necessary to tell if each statement is true or false.

C

Ø

- 14. $\overline{AB} \cup \overline{BC} = \overline{AC}$
- 15. $\overrightarrow{BE} \cap \overrightarrow{BF} = \overrightarrow{EF}$

Given: AD and EF are straight lines and intersect at B.

16. $\overline{AB} \cup \overline{CD} = \emptyset$

17. $\overrightarrow{BC} \subset \overrightarrow{BC}$

QUICK REVIEW

Least common multiple (LCM) may be found without listing the multiples.

EXAMPLE 1	Find the LCM of 15 and 18. First list the prime factors of each number.	$15 = 3 \times 5$ $18 = 2 \times 3 \times 3$ LCM = 2 × 3 × 3 × 5 = 90
	The LCM must contain each of the factors in the original numbers. The 3 must be used twice because that is the most number of times it is used in one number.	You may check by division to see that 15 and 18 are both factors of 90.
EXAMPLE 2	Find the LCM of 12 and 25. First list the prime factors of each number. We use 2 and 5 twice as factors because they are used twice in the original numbers.	$12 = 2 \times 2 \times 3$ $25 = 5 \times 5$ LCM = 2 × 2 × 3 × 5 × 5 = 300 You may check by division to see that 12 and 25 are both factors of 300.

Use the factoring method to find the LCM.

1. 16 and 18

- 2. 10 and 14
- 3. 24 and 50

Use PARAchute EXpert My Dear Aunt Sally to simplify each expression.

4. $4 \cdot 8 + 3^2 =$ 5. $10 \cdot 4^2 - 25 =$ 6. $7^2 - 9 \div 2 =$ 7. $18 \cdot 2 + 5^2 - 11 =$ 8. $15 \div 3 \cdot 8 + 10 =$ 9. $(-5)^2 + (9 + 4^2) =$

10.
$$9^2 + 48 \div 12 - 3^3$$
 11. $|4^2 - 9| + (8 \div 4)^2 =$

12.
$$|3^2 - 5^2| - (15 \div 3)^3 + 18 =$$
 13. $|10^2 - 5^2| + |-8 + 2^2| =$

14.
$$|18 - 36| + (|3 - 5^2| - 15)^2 =$$
 15. $|(-10)^2 - 9| - |2^4 - 5^2| =$

SYSTEMATIC REVIEW

Use the correct order of operations to simplify.

1.
$$4 \cdot 7 + 3^2 =$$
 2. $5^2 + 8 \div 2 =$

3.
$$12^2 \times (2+3) - 4 =$$
 4. $9 \times 1^2 - 8 =$

- 5. $14 \div 2 1 \times 6 =$ 6. $6 + 28 \div 7 4^2 =$
- 7. $(-3)^2 \div 9 + 6 =$ 8. $|6 \div (-2)| \times 5 + 3^2 =$

Solve.

- 9. $\frac{3}{8} \times \frac{2}{5} \times \frac{2}{3} =$ 10. $\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} =$
- 11. List the prime factors of 64. 12. List the prime factors of 81.

13. Reduce
$$\frac{32}{48}$$
 using the GCF. 14. Find the LCM of 24 and 36.

Find the same denominator and divide the numerators.

15.
$$\frac{2}{3} \div \frac{2}{7} =$$

To divide, multiply by the reciprocal.

16.
$$\frac{2}{3} \div \frac{2}{7} =$$

QUICK REVIEW

There are two ways to determine where to put the decimal in the answer, or product, when multiplying.

EXAMPLE 1	.24 <u>.3</u> .072	Ignore the decimal point when multiplying, then think, " $1/100 \times 1/10 = 1/1000$." The answer must be in thousandths and have three decimal places.
EXAMPLE 2	.24 .32 48 72 .0768	Line up the decimal points when setting up the problem. After multiplying, count the total number of decimal places in the two factors and give the product the same number of deci- mal places as that total.

Multiply.

- 17. .7 x .3 = 18. 2.4 x 1.2 =
- 19. 1.3 x 2.1 = 20. .4 x 3.2 =

SYSTEMATIC REVIEW

Use the correct order of operations to simplify. See Lesson 1A for review of negative numbers with exponents.

1.
$$-4^{2} + (7 - 3)^{2} - |-2| =$$

2. $4(10 - 3) - 5(6) + 8 \div 2 =$
3. $-19 - (7)(-2) + 6^{2} =$
4. $-(A - B) + A - B =$
5. $11^{2} \div 4 + \frac{2}{3} =$
6. $5 \times 3 + 4^{2} - 7 + (-8 \div 4) =$
7. $-5^{2} + (-5)^{2} =$
8. $|(9^{2} \div 9) \div 3)| =$

Solve.

9.
$$\frac{2}{5} \times \frac{7}{8} \times \frac{4}{7} = 10. \quad \frac{5}{24} + \frac{9}{32} =$$

Fill in the ovals with = (equals) or \neq (is not equal to) and answer the questions.

11.
$$(3 \times 4) \times 6 \bigcirc 3 \times (4 \times 6)$$
 12. Is multiplication associative?

13. 10 - (8 - 6) (10 - 8) - 6 14. Is subtraction associative?

Find the same denominator and divide the numerators.

15. $1\frac{5}{7} \div 1\frac{3}{4} =$

To divide, multiply by the reciprocal.

16. $1\frac{5}{7} \div 1\frac{3}{4} =$

QUICK REVIEW

To divide decimals, first multiply both terms by the number that will make the divisor a whole number.

EXAMPLE 1

.4 3.6 Multiply .4 and 3.6 by 10, then divide as usual. The decimal in the answer goes directly over 9. the decimal below. 4. 36. EXAMPLE 2 .35 10.50 Both .35 and 10.5 were multiplied by 100.

Divide. If necessary, add zeros and continue dividing until you find the answer to the nearest hundredth.

17.
$$2.3 \div .06 =$$
 18. $2.5 \div .5 =$

19. $2.5 \div .05 =$ 20. $1.06 \div 5.3 =$