Board Problems Ch.5

1)
$$F(x) = 3x - 1$$
 $G(x) = 2x^2 + 1$

a) find
$$f(g(x)) =$$

c) find
$$g(f(3)) =$$

2) Find the inverse of
$$f(x) = 3x^2 - 8$$

	Ch.5	- TR	IGONOM	ETRY R	ZEVLEW	
	DRAW	y= s	in (x)	and	y = c	os (x)
	-					
DRAW	y = tai	n (x)		tar) x =	
						, are where
					0 ,	
	MBER	SPEC	IAL T	TRIANGL	23.	
45°	45°	and _		36		
USE	THESE V	4cues	To Fill	J 3HT OIL	JNIT CIRCI	Æ.

Fill in The Unit Circle

EmbeddedMath.com

GENERAL FORM OF SINE AND COSINE FUNCTION	
y = d + a sin [b(x-c)]	
d =	
α =	
b =	
C =	
Period =	
Graph $f(x) = 1 + 3 sin[2(x-\frac{\pi}{2})]$	
Period =	
Graph $f(x) = 1 + 2\cos\left[\frac{1}{2}(x+\pi)\right]$	

$$[EX. 7]$$
 Solve $SIN(2X+\pi) = 1$ at $[0,\pi]$ where does $SIN\Phi = 1$?

when $\Phi = 1$, ..., ...

Solve for X at each Φ
 $2X+\pi = 2X+\pi = 2$

Answer the questions.

1. Draw the graph of $y = \sin(2x)$. What is its period?

2. Draw the graph of $y = \tan\left(\frac{1}{2}x\right)$. What is its period?

3. Draw the graph of y = cos(3x) + 1 on $[0, 2\pi]$.

4. Draw the graph of $y = 2 - \sin(x)$ on $[0, 2\pi]$.

5. Evaluate the following trig functions.

A.
$$\sin\left(\frac{3\pi}{4}\right)$$

B.
$$\cos\left(\frac{\pi}{3}\right)$$

C.
$$\sec\left(\frac{\pi}{6}\right)$$

D.
$$\csc\left(\frac{\pi}{2}\right)$$

E.
$$\tan\left(\frac{7\pi}{6}\right)$$

F.
$$\cot\left(\frac{5\pi}{4}\right)$$

6. Solve for x: cos(2x) = 1 for x in $[0, \pi]$.

From that viscolars balance the spready libration of the spready libration

and the second s