FIND THE DERIVATIVES.

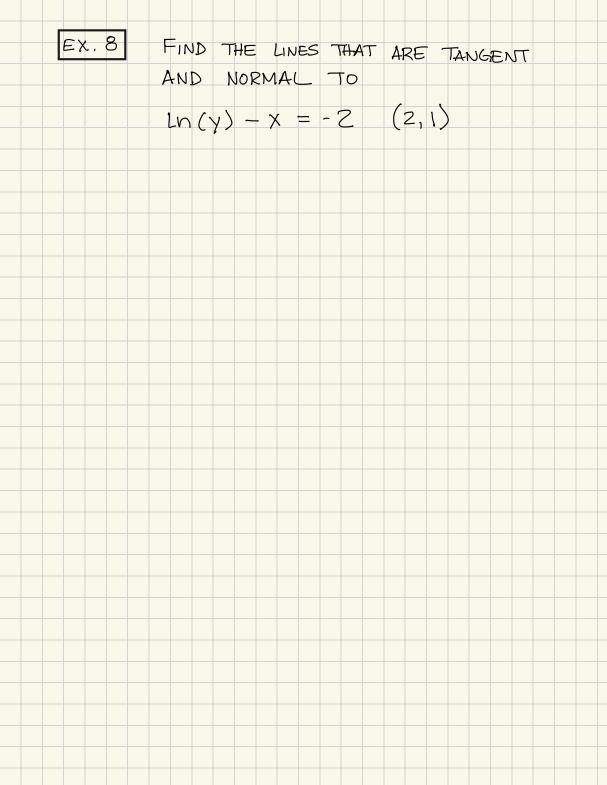
$$y = e^{2x^3}$$

3
$$y = e^{(4x^3 + 5)^2}$$

(5) FIND THE INVERSE.
$$f(x) = \Im x + 1 + 2$$

(6) FIND vertex and
standard form
$$y = -5(x-2)(2x+3)$$

 $4) \quad y = \ln\left(\frac{4x^5}{x^3-3}\right)$


 $y = cosln(4x^3)$

EX. 3 DIFFERENTIATE WITH RESPECT TO X.
$$4y + \sqrt{y} = 2x - 3$$

EX. 4 DIFFERENTIATE IMPLICITLY.
$$\chi^2 + \chi^2 = 2ay$$

$$EX.5$$
 $Sinyer e^{x} = 2x$

EX. 7 DETERMINE ON WHICH POINTS OF
$$X^2 + y^2 = 1$$
 CAUSE THE SLOPE OF THE TANGENT LINE = 1

LESSON PRACTICE

Solve by implicit differentiation with respect to x.

1.
$$2x + 3y = 4$$

2.
$$3xy = 2x$$

3.
$$ln(y) = x^2$$

4.
$$\sin(y) = x^2 - 1$$

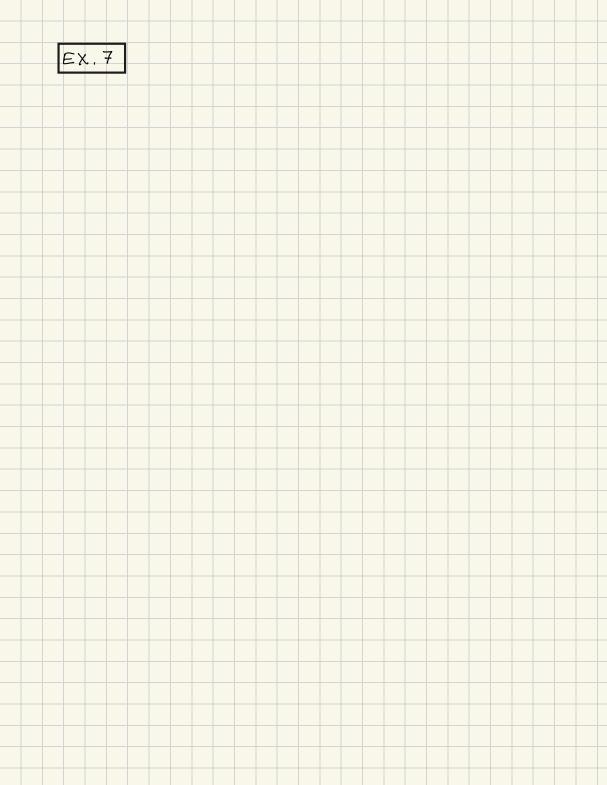
5.
$$(y^2 - 2y)^3 = x$$

6.
$$15x = 15y + 5y^3 + 3y^5$$

7.
$$x = \sqrt{y} + \sqrt[3]{y}$$

LESSON PRACTICE 14A

8.
$$x^3 + x^2y + y^3 = 3$$


9.
$$\sin(x) + \cos(y) = y$$

10.
$$e^{x} + e^{y} = 2y$$

Find the slope of the tangent line to the curve at the point given.

11.
$$-3 + xy = y$$
 at (2, 3)

12.
$$xy^2 + \frac{1}{x} = 2y + x$$
 at (1, 2)

