LESSON PRACTICE

Build and find the factors, then check by multiplying. Don't forget to check for a GCF. (You may not have enough blocks to build some of these.)

1.
$$2X^2 + 7X + 5$$

2.
$$5X^2 + 17X + 6$$

3.
$$2X^2 + 11X + 5$$

4.
$$4X^2 + 13X + 3$$

5.
$$2X^2 + 16X + 30$$

6.
$$3X^2 + 9X + 6$$

7.
$$2X^2 + 11X + 9$$

8.
$$3X^2 + 23X + 14$$

LESSON PRACTICE 22B

9.
$$2X^2 + 13X + 15$$

10.
$$5X^2 + 50X + 105$$

11.
$$6X^2 + 36X + 48$$

12.
$$3X^2 + 14X + 16$$

13.
$$4X^2 + 14X + 6$$

14.
$$5X^2 + 7X + 2$$

15.
$$10X^2 + 11X + 1$$

16.
$$4X^2 + 23X + 15$$

SYSTEMATIC REVIEW

Build a rectangle and find the factors.

1.
$$3X^2 + 7X + 4 = (+)(+)$$

2.
$$2X^2 + 7X + 6 = (+)(+)$$

Build a rectangle and find the area (product).

3.
$$(2X + 2)(X + 3) =$$

4.
$$(2X + 4)(X + 2) =$$

5. Find the factors:
$$3X^2 + 13X + 12$$
.

6. Check #5 by multiplying the factors to find the product.

7. Find the factors:
$$4X^2 + 24X + 36$$
.

8. Check #7 by multiplying the factors to find the product.

9. Find the factors:
$$4X^2 + 8X + 3$$
.

10. Check #9 by multiplying the factors to find the product.

SYSTEMATIC REVIEW 22C

Simplify. Write your answer on one line unless otherwise instructed.

11.
$$B^2 \times B^6 \times B^{-5} =$$

12.
$$A^{B} \cdot A^{C} =$$

Hint for #13-14: first rewrite so that all the terms are in the numerator.

13.
$$\frac{X^{-3}Y^2X^{-1}}{Y^{-3}X^{-5}} =$$

14.
$$\frac{A^3A^{-2}B^1}{B^{-2}A^4} =$$

15. What number is this? $6 \times 10^6 + 8 \times 10^4 + 2 \times 10^3 + 7 \times 10^{-2}$

- 17. What is the equation of a line parallel to #16 through (0,4)? Graph the line.
- 18. A scientist had one amoeba in a lab dish. The amoeba divided and doubled its numbers every hour. How many are there at the end of one hour? two hours? three hours? four hours?
- 19. Rewrite each answer in #18 using 2 and an exponent. (At the end of the first hour, there would be 2^1 amoebas.) Look for the pattern.
- 20. Using exponents, write expressions telling how many amoebas there are after six hours and after X hours.

SYSTEMATIC REVIEW

Build a rectangle and find the factors.

1.
$$3X^2 + 11X + 10 = (+)(+)$$

2.
$$4X^2 + 10X + 4 = ()(+)(+)$$

Build a rectangle and find the area (product).

3.
$$(3X + 3)(X + 2) =$$

4.
$$(3X)(2X + 1) =$$

5. Find the factors:
$$3X^2 + 8X + 5$$
.

6. Check #5 by multiplying the factors to find the product.

7. Find the factors:
$$4X^2 + 11X + 7$$
.

8. Check #7 by multiplying the factors to find the product.

9. Find the factors:
$$X^2 + 5X + 6$$
.

10. Check #9 by multiplying the factors to find the product.

Simplify each expression.

11.
$$C^{-4} \times C^3 \times C^0 =$$

12.
$$8^5 \div 8^3 =$$

Hint for #13-14: first rewrite so that all the terms are in the numerator.

13.
$$\frac{B^5B^2C^{-5}}{B^{-4}C^{-3}} =$$

14.
$$\frac{D^6C^{-4}D^2}{D^{-4}C^0C^2} =$$

15. Write this number with exponential notation: 86,900.4

16. Rewrite in slope-intercept form and graph: 3Y = 2X + 6.

17. What is the equation of a line parallel to #16 through (-3, -3)? Graph the line.

- 18. Dad agreed to triple Jason's allowance every week. For week one Jason received \$3. How much did he get for week two? week three? week four? week five?
- 19. Rewrite each answer for #18 using 3 and an exponent. (For the first week, Jason would get 3¹ dollars.) Do you see a pattern?
- 20. Using exponents, write an expression telling how much Jason would be getting per week at the end of 20 weeks. If you have a calculator that will do exponents, use it to find how much money that would be.