LESSON PRACTICE

QUICK REVIEW

Study these examples of subtracting negative numbers.

$$(-9) - (+5) = (-9) + (-5) = -14$$

$$(-9) - (-5) = (-9) + (+5) = -4$$

$$(9) - (+5) = (+9) + (-5) = 4$$

Add or subtract.

1.
$$(-3) + (-10) =$$

$$2. (-3) - (10) =$$

3.
$$(6) - (-5) =$$

4.
$$(-8)$$
 - (-5) =

Simplify by combining like terms.

EXAMPLE 1
$$2A - 3B + 4A + 4B - 5A =$$

 $2A + 4A - 5A - 3B + 4B =$
 $(2A + 4A - 5A) + (-3B + 4B) = A + B$

5.
$$5D - 6C + 8D - 3C + B =$$
 6. $2A + B - A + 3B =$

6.
$$2A + B - A + 3B =$$

7.
$$5Q + 3C - C + Q + 4Q - 5C =$$
 8. $20 + 5X - 6Y + Y + 2X + X - 9 =$

9.
$$2X + 2 - X + 2X =$$

10.
$$3Y - 1 + 2Y - 1 - 4Y =$$

11.
$$5A - 6B - 3B + 10A - 8 =$$
 12. $18X - 5Y - 9X + Y =$

12.
$$18X - 5Y - 9X + Y =$$

True or False.

13. Division is associative.

14. Multiplication is commutative.

15. Subtraction is associative.

SYSTEMATIC REVIEW

Simplify by combining like terms.

1.
$$4Q + 2C - 2C - 2Q - 3C =$$
 2. $-5M - 7 + 3M - 4 + 5 =$

2.
$$-5M - 7 + 3M - 4 + 5 =$$

3.
$$2A - 3B + 4C - A + B + C =$$
 4. $4A - 5 - 2A + 7 - 1 =$

4.
$$4A - 5 - 2A + 7 - 1 =$$

5.
$$4X - 3Y - 6Y + 10X - 5 =$$
 6. $15X - 4Y - 6X + Y =$

6.
$$15X - 4Y - 6X + Y =$$

7.
$$15X + 6X - 4Y - 5Y - 14X + 10 = 8$$
. $3A - 4B + 6A + 7B + 8 =$

8.
$$3A - 4R + 6A + 7R + 8 =$$

Solve. Use what you know about multiplying negative numbers to determine signs when dividing.

9.
$$(-3)(5) =$$

10.
$$(-81) \div (-9) =$$

11.
$$4 \div (-2) =$$

12.
$$(-5)^2 =$$

13.
$$4 + (-2) =$$

14.
$$-4^2 =$$

QUICK REVIEW

To multiply fractions, divide terms where possible, then multiply numerators and denominators.

EXAMPLE 1
$$\frac{5}{3}\cancel{8} \times \frac{\cancel{8}}{7} \times \frac{\cancel{8}}{\cancel{3}} = \frac{5}{21}$$

15.
$$\frac{1}{4} \times \frac{7}{11} \times \frac{4}{7} =$$

16.
$$\frac{1}{2} \times \frac{5}{6} \times \frac{11}{12} =$$

To divide fractions, find the same, or common, denominator and divide the numerators. Change to improper fractions first if necessary.

EXAMPLE 2
$$1\frac{5}{7} \div 1\frac{3}{4} = \frac{12}{7} \div \frac{7}{4} = \frac{48}{28} \div \frac{49}{28} = \frac{48}{49}$$

17.
$$\frac{1}{3} \div \frac{4}{5} =$$

18.
$$7\frac{1}{2} \div 2\frac{4}{7} =$$

To divide fractions using the short cut, multiply by the reciprocal.

EXAMPLE 3
$$1\frac{5}{7} \div 1\frac{3}{4} = \frac{12}{7} \div \frac{7}{4} = \frac{12}{7} \times \frac{4}{7} = \frac{48}{49}$$

19.
$$\frac{1}{3} \div \frac{4}{5} =$$

20.
$$7\frac{1}{2} \div 2\frac{4}{7} =$$

SYSTEMATIC REVIEW

Simplify by combining like terms.

1.
$$2A - 3B + 4A + 4B - 5A =$$

1.
$$2A - 3B + 4A + 4B - 5A =$$
 2. $18X + 5X - 6Y - 8Y - 11X + 10Y =$

3.
$$4A - 4B + 16A + 7B + 18 =$$

$$4. -5X + 3 + 8X - 4 =$$

5.
$$8K - 6 + 3K - 2K + 3 =$$

6.
$$10C - 3C - 9D + 3D - C =$$

7.
$$13A - 8Z - 2A - 12Z =$$

8.
$$7D - 4D - 4 + 5D + 8 - 7D =$$

Solve.

9.
$$(-3)^2 =$$

10.
$$-3^3 =$$

11.
$$(-6)(-2) =$$

12.
$$(-4) - (-3) =$$

13.
$$\frac{4}{5} \times \frac{1}{2} \times \frac{5}{8} =$$

14.
$$\frac{1}{2} \times \frac{6}{7} \times \frac{2}{3} =$$

SYSTEMATIC REVIEW 1D

Find the same denominator and divide the numerators.

15.
$$\frac{5}{8} \div \frac{1}{7} =$$

To divide, multiply by the reciprocal.

16.
$$\frac{5}{8} \div \frac{1}{7} =$$

QUICK REVIEW

In a multiplication problem, the numbers being multiplied are the factors and the answer is the product.

EXAMPLE 1 The number 12 has several possible sets of factors.

They are 1×12 , 2×6 , and 3×4 .

The factors of 12 are 1, 2, 3, 4, 6, and 12.

EXAMPLE 2 The number 5 has only one possible set of factors,

which is 1 x 5. The factors of 5 are 1 and 5.

Twelve is a composite number because it has more than two factors. Five is a prime number because it has only two factors, one and itself. (One is not considered prime because it has only one factor.)

Any composite number may be written as a product of its prime factors. A factor tree or repeated division may be used to find the prime factors of a given number.

18. 42

Find the prime factors of the following numbers using either method.

17. 28

19. 48 20. 100