Board Problems ch. 19
(1) $\sqrt{225}=$ \qquad (2) $-\sqrt{196}=$ \qquad
(3) $6^{2} \cdot 6 \cdot 6^{4}=$ \qquad
(4) $x^{3} \cdot x^{4} \cdot y^{3}=$ \qquad
(5) $7^{8} \div 7=$ \qquad
(6) $x^{4 y} \cdot x^{6 y} \div x^{2 y}=$ \qquad
(7) WHEN YOU \qquad two numbers with the same base, you subtract the exponent.

* (8) $x^{-3}=$ \qquad (MAKE exponent positive)
* only if you remember. this is a challenge.

Ch. 19- Negative Exponents

$$
\frac{2^{2}}{2^{5}}=\quad \frac{2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}=
$$

have a negative exponent? Think \qquad OPPOSITE PLACE (NUMERATOR \quad DENOMINATOR), OPPOSITE SIGN.

$$
\begin{aligned}
& 3^{-3}=\frac{1}{2^{4}}= \\
& 2^{5}= \\
& \frac{1}{3^{-3}}=
\end{aligned}
$$

RULE: $\frac{1}{X^{A}}=-\frac{1}{X^{-A}}=$
POWER OF \varnothing.

$$
=\frac{10^{2}}{10^{2}}=
$$

ANYTHING TO THE EXPONENT OF $0=$ \qquad

$$
\begin{aligned}
5^{0} & = \\
100^{\circ} & = \\
2001^{\circ} & = \\
x^{0} & =
\end{aligned}
$$

Ch. 19 (notes)
Raising an exponent to an exponent.

$$
\begin{array}{ll}
\left(5^{4}\right)^{3}= & \left(x^{A}\right)^{B}= \\
5^{4} \cdot 5^{4} \cdot 5^{4}= & {\left[\left(6^{3}\right)^{2}\right]^{-4}=} \\
\left(2 x^{3} y^{8}\right)^{3}= & \begin{array}{ll}
\text { REDUCE BASES } \\
64 & =4^{-} \\
64 & =8^{-} \\
\left(\frac{2}{3} x^{5} \cdot z^{-3}\right)^{4}= &
\end{array} \quad \begin{array}{ll}
64 & =2^{-}
\end{array}
\end{array}
$$

SIMPLIFYING
(1) $M \cdot B^{2} \cdot B^{0} \cdot M^{-4} \cdot B^{-5} \cdot M^{8}$
(2) $\frac{F^{4} \cdot K^{2}}{K^{8} F^{-5}}=$

Move Denominator up to numerator FIRST
(3) $\frac{x^{2} \cdot y^{3} \cdot z^{4}}{z^{3} x^{2}-y}=$
(4) $\frac{x^{-4} y^{-3} x^{2}}{x^{-5} y^{-7}}=$

Name

Solve simultaneous equations by SUBSTITUTION.

1. $y=5 x-7$

$$
-3 x-2 y=-12
$$

Solve simultaneous equations by ELIMINATION.

1. $5 x+8 y=-17$

$$
2 x-7 y=-17
$$

2. $3 x-8 y=24$

$$
-5 x+y=-3
$$

LESSON PRACTICE

Write on one line.

1. $\frac{1}{4^{2}}=$
2. $\frac{1}{7^{2}}=$
3. $\frac{1}{4^{-3}}=$
4. $\frac{1}{3^{-2}}=$

Rewrite using positive exponents.
5. $5^{-3}=$
6. $10^{-7}=$

Simplify each expression and write it on one line.
7. $7^{-3} \cdot 7^{-8}=$
8. $6^{-2} \cdot 6^{-3}=$
9. $9^{-5} \div 9^{-2}=$
10. $3^{-8} \cdot 3^{4}=$

Simplify each expression and write it on one line.
11. $B^{-2} B^{3} C^{-1} B^{5} C^{-5} C^{1}=$
12. $C^{-1} D^{-5} D^{4} C^{3} D^{-2} D^{4} C^{1}=$
13. $\left(8^{5}\right)^{4}=$
15. $\frac{A^{-1} B^{2} B^{-1}}{A B^{-3}}=$
16. $\frac{C^{0} B^{-3} C^{3} B}{C^{-3} B^{4}}=$

