Algebra 1 - Board Problems - Chapter 18

1) Five times the second of three consecutive even integers is six more than twice the sum of the first and third integers. Find the middle even integer.
2) Three times the second of three consecutive even integers is twelve less than twice the sum of the first and third integers. Find the largest even integer.
3) The sum of three consecutive even integers is negative forty-eight. Find the smallest integer.
4) Four times the smallest of three consecutive integers is three more than three times the largest.

Name

Solve simultaneous equations by SUBSTITUTION.

1. $-2 x+6 y=6$

$$
-7 x+8 y=-5
$$

Solve simultaneous equations by ELIMINATION.
2. $2 x+y=20$

$$
6 x-5 y=12
$$

3. $8 x+14 y=4$

$$
-6 x-7 y=-10
$$

Alg I-Ch. 18 Multiplication/division OF EXPONENTS

4

$$
4 \times 4=4^{2}
$$

WHAT IS THE OPPOSITE OF squaring? \qquad
WHY DO WE CONSIDER THE NEGATIVE SQUARE?
$\ldots \times=$ \qquad

$$
\sqrt{121}=
$$

$$
-----2^{3} \cdot 2^{4}=-\quad 3^{2} \cdot 3^{3}=-
$$

$$
x^{A} \cdot x^{B}=
$$

\qquad

$$
2^{3} \cdot 3^{4} \cdot 2^{5}=
$$

$$
2^{5} \div 2^{3}=\frac{x^{A}}{x^{B}}=
$$

$$
3^{2} \div 3^{5}=
$$

\qquad

ALGI - Ch. 18 PrACTICE
(1) $2^{3} \cdot 2^{6}=$
(2) $2^{8} \div 2^{6}=$ \qquad
(3) $9^{x} \cdot 9^{y} \cdot 9^{z}=$ \qquad (4) $5^{3} \cdot 5 \cdot 5^{2}=$ \qquad
(5) $3^{2} \cdot 3^{3} \cdot 3^{4} \cdot 2^{6}=$ \qquad (6) $3^{2} \div 3^{4}=$ \qquad
(7) $y^{2 x} \cdot y^{3 x}=$ \qquad (8) $2 x^{4} \cdot 3 x^{5}=$ \qquad
(9) $\sqrt{625}=$ \qquad (10) $-\sqrt{81}=$ \qquad
define parallel lines \qquad
define perpendicular lines \qquad

LESSON PRACTICE

Simplify each expression.

1. $15^{2}=$
2. $\sqrt{169}=$

3. $(-8)^{2}=$

4. $-\sqrt{100}=$
5. $16^{2}=$
6. $\sqrt{144}=$
7. $4^{5} \cdot 4^{2}=$
8. $8^{4} \cdot 8^{7}=$
9. $8^{7} \div 8^{3}=$
10. $B^{2} B^{3} B^{5}=$
11. $8^{\mathrm{X}} \cdot 8^{\mathrm{Y}}=$
12. $3^{8} \cdot 3^{4}=$
13. $C^{1} D^{5} D^{4} C^{3} D^{2}=$
14. $8^{9} \cdot 8^{10} \div 8^{3}=$
15. $X^{5 Y} \div X^{2 Y}=$
