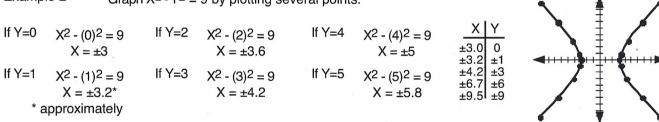
## Lesson 26 Hyperbola

In Algebra 1 we were introduced to the hyperbola with the equation XY = N, where N is some number. Let's do two examples and plot the points to get a feel for this conic section.

| Example 1 Graph XY = 6 by plotting several points. $X Y$ |                   |        |                   |         |                     |                                        | Figure 1 |
|----------------------------------------------------------|-------------------|--------|-------------------|---------|---------------------|----------------------------------------|----------|
| If X=1                                                   | (1)Y = 6<br>Y = 6 | If X=3 | (3)Y = 6 $Y = 2$  | If X=-1 | (-1)Y = 6<br>Y = -6 | +1 +6<br>+2 +3<br>+3 +2<br>+6 +1       | <u> </u> |
| If X=2                                                   | (2)Y = 6 $Y = 3$  | If X=6 | (6)Y = 6<br>Y = 1 | If X=-6 | (-6)Y = 6<br>Y = -1 | -1   -6<br>-6   -1<br>-2   -3<br>-3 -2 |          |


Notice that as Y increases, X decreases, and vice versa. Looking at the original equation, can X or Y ever be 0? No, because what times 0 is equal to 6? Both of the curves approach the axes, but they will never touch them. Just for fun, what is Y if X = .01? Y would have to be 600. Picture that point on the graph.

The hyperbola is a visual representation of an inverse relationship. Another example of an inverse relationship is Distance = Rate multiplied by Time. Distance is a constant, say 100 miles. If you drive 100 miles per hour, it takes 1 hour, 100=100x1. If you drive 50 mph, then time increases to 2 hours, 100=50x2. If the rate decreases to 25 mph, then the time increases to 4 hours, 100=25x4. As the rate decreases, the time increases, and vice versa. An example of direct variation is represented by the line Y=mX+b. As X increases, Y also increases.

There is another type of equation which also is graphed as a hyperbola. This type is similar to the difference of two squares. Officially, it is when you have 2 variables, each raised to the second power, with opposite signs. They don't have to be perfect squares, however. Here are some examples:  $A^2 - B^2 = 9$ , or  $3G^2 - 4H^2 = 12$ .

Here is a summary of the possibilities for parabolas: XY = +N lies in the 1st and 3rd quadrants; XY = -N lies in the 2nd and 4th quadrants;  $AX^2 - BY^2 = N^2$  intersects the X axis in 2 places and looks like a C and a backwards C.  $AY^2 - B^2 = N^2$ intersects the Y axis in 2 places and looks like a U and an upside-down U.

Example 2 Graph  $X^2 - Y^2 = 9$  by plotting several points.



Note: If Y=4, X=±5, and if Y=-4, X=±5. That gives us four coordinates. (4,5), (4,-5), (-4,5), (-4,-5).

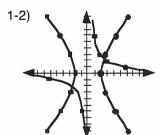
## Practice Problems

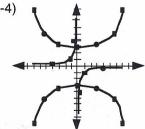
1) 
$$XY = 6$$

3) 
$$XY = -1$$

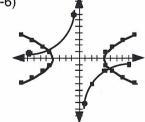
5) 
$$XY = -8$$

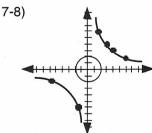
Figure 1


2) 
$$9X^2 - 4Y^2 = 36$$


4) 
$$2Y^2 - X^2 = 18$$

6) 
$$X^2 - 4Y^2 = 16$$


8) 
$$X^2 + Y^2 = 4$$


## Solutions





5-6)



