Lesson 23 Conic Sections, Circle and Ellipse

Conic sections were introduced in Algebra 1 as the circle, ellipse, parabola, and hyperbola. In this book we want to cover them in more depth both as they appear on a two dimensional graph, and their corresponding equations. These four shapes are also referred to as conic sections. Conic comes from cone. When a plane intersects a single or double cone the resultant shapes are: the circle, ellipse, parabola, and hyperbola. Look at the shapes below and on the video.

The curcle of the curcle could better be written as $(X-a)^2 + (Y-b)^2 = R^2$ with the center at (a,b) and a radius of R. $X^2 + Y^2 = 9$ can be rewritten in this form as $(X-0)^2 + (Y-0)^2 = 3^2$ with the center at (0,0) and a radius of 3. Its graph is Figure A. Figure A

Example 1

Graph $X^2 + Y^2 = 25$

The equation of the circle could better be written as $(X-0)^2 + (Y-0)^2 = 5^2$ with the center at (0,0) and a radius of 5. Its graph is Figure 1.

Example 2

Sometimes we get a quadratic for X and Y such as: $X^2 + 2X + 1 + Y^2 - 4Y + 4 = 9$.

Factoring $(X+1)^2 + (Y-2)^2 = 3^2$

The center is (-1, 2) and the radius is 3. The graph is Figure 2. If X=-1 and Y=2, then you have the same graph as in Figure A with the same radius.

┩┼┼┼┼┼┼┟╽╽╽╽┝

Figure 3

Example 3

Rewrite the equation to find the center and the radius: $X^2 - 6X + Y^2 + 10Y = -18$. To make the X and Y components perfect squares, we need to complete the squares of each.

> $X^2 - 6X + _$ + $Y^2 + 10Y + _$ = -18 + ____ $X^2 - 6X + 9 + Y^2 + 10Y + 25 = -18 + 34$

Factoring

The center is (3, -5) and the radius is 4. The graph is Figure 3.

Example 4

Find the equation of the circle given the center point and the radius. The center is (-2, 3) and the radius is 4. Working backwards, $(X+2)^2 + (Y-3)^2 = 4^2$, which is $X^2 + 4X + 4 + Y^2 - 6Y + 9 = 16$.

Combined further, $X^2 + 4X + Y^2 - 6Y = 3$.

 $(X-3)^2 + (Y+5)^2 = 4^2$

Practice Problems

Find the coordinates of the center and the radius, then graph the result.

7) (0,4) r = 8

1) $X^2 + Y^2 = 16$ 3) $(X-2)^2 + (Y+3)^2 = 49$

2) $(X+1)^2 + (Y+1)^2 = 36$ 4) $4X^2 + 4Y^2 = 9$

Given the coordinates of the center and the radius, create the equation of the circle.

5) (1,2) r = 4

6) (-2,-3) r = 2 8) (3, 1/2) r = 10

By completing the square, find the center and radius of these equations, then sketch the results.

9) $X^2 - 6X + Y^2 - 8Y = -8$.

11) $X^2 + Y^2 - 8Y - 9 = 0$.

10) $X^2 - 2X + Y^2 - 4Y = 11$.

12) $X^2 - X + Y^2 + 2Y = -29/36$

Solutions

The Ellipse If the coefficients of X² and Y² are equal, then you have a circle. In our previous example, both coefficients were 1. If you were given an equation with coefficients of 4, you could divide through the equation by 4 and they would be 1 again. If the coefficients are equal, the graph is a circle. The equation $9X^2 + 4Y^2 = 36$ (or the same equation after dividing by 36, $X^2/4 + Y^2/9 = 1$) looks similar to an equation for a circle, because you have two squares added together. In this case observe the coefficients. If the coefficients are not equal, then the equation is for an ellipse.

Example 1 Plot several points and graph the ellipse $4X^2 + 9Y^2 = 36$. The key is to find the value of each variable which makes the corresponding term equal 0. Then you know where the graph intercepts the axes.

$4(0) + 9Y^2 = 36$	If $Y = 0$	$4X + 9(0)^2 = 36$	
9Y ² = 36		$4X^2 = 36$	
$Y^{2} = 4$		X ² = 9	
$Y = \pm 2$		$X = \pm 3$	
	$4(0) + 9Y^{2} = 36$ $9Y^{2} = 36$ $Y^{2} = 4$ $Y = \pm 2$	$4(0) + 9Y^{2} = 36$ If $Y = 0$ $9Y^{2} = 36$ $Y^{2} = 4$ $Y = \pm 2$	$4(0) + 9Y^2 = 36$ If $Y = 0$ $4X + 9(0)^2 = 36$ $9Y^2 = 36$ $4X^2 = 36$ $Y^2 = 4$ $X^2 = 9$ $Y = \pm 2$ $X = \pm 3$

 $9(0) + 16(Y-2)^2 = 144$

 $16(Y-2)^2 = 144$

Y-2 = +3, -3

Y = +5, -1

 $(Y-2)^2 = 9$

If X = 1

Plot several points and graph the ellipse $9(X-1)^2 + 16(Y-2)^2 = 144$. Example 2 Locate the center, then find the values of X and Y which make each term equal zero. Then you can find the extremities of the ellipse.

If Y = 2

Υ XI 1 +5 **#| | | |** 1 -1 -3 2 +5 2 Figure 2 🔰

Figure 1

X Y 0 ±2 ±3 0

±2 0

Find the coordinates of the center and graph the result. **Practice** Problems

 $9(X-1)^2 + 16(0) = 144$

 $9(X-1)^2 = 144$

 $(X-1)^2 = 16$

X-1 = +4, -4

X = +5, -3

23-3